|
[³o½g¤å³¹³Ì«á¥ÑXinRong¦b 2004/12/08 03:09pm ²Ä 2 ¦¸½s¿è]j\v ©½t¥Í³N¼Æ¬ã¨sªÀ -- ³N¼Æ¬ã¨s¡@¡@ dZ''}
¤U±¤Þ¥Î¥Ñstevie¦b 2004/12/07 02:11pm µoªíªº¤º®e¡GWvTe\ if u write a computer program to generate all possibilities, it could be hundreds of solutions, for 6 by 6 magic squares.{ It's quite simple to write one. Give it a try.&x
|
|
za ©½t¥Í³N¼Æ¬ã¨sªÀ -- ³N¼Æ¬ã¨s¡@¡@ 5gA_ ¦hÁ«Øij¡C¦ý§Ú«o¤£À´µ{¦¡½s¼¶¡C ¥i§_¥N³Ò¡A«¢«¢ ¡I $t/ ©½t¥Í³N¼Æ¬ã¨sªÀ -- ³N¼Æ¬ã¨s¡@¡@ 5xKE3 Y¦Ò¼{¦ì¸m¤£¦P¬°¤£¦P½s±Æ²Õ¦X¡A¤»¤»¤Û¤è·|¦³ 36! Ó²Õ¦X¡A§Yd<kFYA 371,993,326,789,901,000,000,000,000,000,000,000,000,000 Ó²Õ¦X¡I.<+gs4 ³]¤T¤Q¤»Ó¼Æ¬° ai (i=1,2,...,36) ¡A¥ý¥Ñ¥ª¦Ü¥k¡A¦A¥Ñ¤W¦Ü¤U¶¶§Ç±Æ¦C¡A·í¤¤n²Å¦X¥H¤U±ø¥ó¡Gvn:k 1. 1¡Ø ai ¡Ø36;BQ 2. £Uai = 111 (i = k, k+6, k+12, k+18, k+24, k+30; k=1,2,3,4,5,6)CXi 3. £Uai = 111 (i = k, k+1, k+2, k+3, k+4, k+5; k=1,7,13,19,25,31)<n 4. £Uai = 111 (i = 1,8,15,22,29,36)QC]E 5. £Uai = 111 (i = 6,11,16,21,26,31)bZN
| | |
|
|
|